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Abstract. We employ the Nambu–Jona-Lasinio model to determine the vacuum pressure on the quarks in
a baryon and hence their density inside. Then we estimate the baryonic masses by implementing the local
density approximation for the mean-field quark energies obtained in a uniform and isotropic system. We
obtain a fair agreement with the experimental masses.

PACS. 12.39.-x Phenomenological quark models – 12.39.Ba Bag model – 12.39.Fe Chiral Lagrangians
14.20.-c Baryons (including antiparticles)

1 Introduction

The Nambu–Jona-Lasinio (NJL) model is a phenomeno-
logical quark model, which entails chiral symmetry break-
ing at low density and temperature, and chiral symmetry
restoration at high density and temperature. In the chi-
rally broken phase, quarks develop a dynamical mass by
their interaction with the vacuum [1,2].

This model has been employed in many different
contexts, for calculations of meson properties, for hot and
dense matter and for the study of diquarks (for reviews
about the model and its applications see, for example,
[3–5]). It can successfully reproduce various empirical
aspects of QCD such as the non-perturbative vacuum
structure, dynamical breaking of chiral symmetry, the
UA(1) anomaly and explicit flavour SU(3) breaking in the
hadronic spectrum. The strong attractive force between
quarks in the JP = 0+ channel induces an instability
in the Fock vacuum of massless quarks, thus generating
a dynamical mass m∗ which is typically of the order of
a few hundred MeV, in agreement with the constituent
quark masses [6–10].

This latter feature allows one to consider the con-
stituent quark basis generated by dynamical symme-
try breaking as a good starting point for the descrip-
tion of hadrons, including baryons. However, beyond the
conventional constituent quark model, the NJL model
takes into account the collective nature of the vacuum
and the Nambu-Goldstone bosons. The remaining non-
perturbative effects such as the long-range confinement
force can be treated as a relatively weak perturbation for
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low-energy phenomena. A similar picture has been first
applied to baryons in ref. [11].

In this work, we first connect the NJL model to the
evaluation of the typical dimensions of a baryon (in par-
ticular the nucleon radius). Then, in the spirit of the con-
stituent quark model, we employ this result to calculate
the octet baryon masses.

In section 2 we recall the main results of the NJL
model, such as the chiral condensate for quarks, the ex-
pression for the dynamical masses, the energy and pressure
of a uniform and isotropic quark system. As it is known,
the dynamical masses in the vacuum are quite large com-
pared to the current quark masses (for the quarks u and
d one goes from a current quark mass of 5 MeV to an ef-
fective mass larger than 300 MeV), but when the density
increases the dynamical masses decrease and hence the
degree of chiral symmetry breaking, caused by the large
effective masses, becomes less severe. A complete chiral
restoration can only be achieved when the bare masses
mi vanish, but even very small values of mi are enough to
prevent it.

We want to apply these considerations to the problem
of the stability of the nucleon. First we note that outside
the nucleon there is a vacuum pressure (Pvac) caused by
the negative energy of the Dirac sea, but inside the nu-
cleon the pressure due to the Dirac sea (PN,vac) is much
lower since it is a high-density region and the dynamical
masses become small. As a consequence, one has an effec-
tive pressure acting on the nucleon, due to the difference
between the energy densities.

The situation is similar to the one encountered in the
MIT bag model [12–15], but here the bag pressure is by
itself a model parameter, while in the NJL model the
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pressures (Pvac, PN,vac) are deduced after tuning the other
parameters to reproduce, e.g., the experimental mesonic
masses. For a generic attempt to derive the bag pressure
see ref. [16].

The residual effective pressure is equilibrated by
the pressure generated by the three quarks inside the
nucleon. Obviously one cannot consider them as a uni-
form and isotropic quark system, neither express their
pressure with the formulas developed in section 2. For
this purpose, in section 3 we will assume heuristic wave
functions for the quarks confined in the nucleon. Under
this assumption we can calculate the quark pressure and,
by imposing that it equals the effective vacuum pressure,
we can derive the radius of the nucleon, to be compared
with the experimental value.

In section 4 we develop the calculation for the masses
of the baryonic octet, utilizing the results of section 3 and
taking into account the dynamical quark masses. The lat-
ter are derived by implementing the local density approx-
imation on a uniform gas of quarks to obtain the depen-
dence of the masses upon the distance from the center of
the baryon, according to the spatial quark density found
in the previous section. The masses increase with the dis-
tance, since the density decreases and vanishes outside the
baryon. An analogous procedure is utilized for the kinetic
energy contribution to the baryonic mass.

We do not attempt, here, an approach based on the
relativistic Faddeev model, quite often implemented from
a NJL-type Lagrangian and applied both to the nucleon
[17–19] and to the baryons’ octet and decuplet [20]. The
merit of the Faddeev approach is to offer an evaluation
of the quark wave function which is consistent with the
model Lagrangian employed. Mesonic properties and the
masses of the nucleon and ∆-resonance are well repro-
duced. Yet, the constituent quark masses are kept con-
stant for a given parameter set.

The central and key point of the present work, instead,
is to take into account the variation of the constituent
masses with the density of quarks inside the hadron: in-
dependently of the details of the wave functions employed
here, this appears to be crucial in order to get a realis-
tic determination of the baryonic masses. Some warning
should apply to the use of the NJL at finite densities (as it
has been extensively discussed in ref. [3]), where it can lead
to unphysical results, like having, e.g., vanishing or even
negative effective mass of the quark. We shall shortly dis-
cuss this point in connection with the present calculation.

Finally we also calculate the masses of two baryons
from the spin-(3/2) decuplet, and find that the present
calculation provides for them a reasonable estimate, which
can be slightly improved by the effect of the spin interac-
tion. We summarize and discuss our results in section 5.

2 Short review of the NJL model

Many versions of the NJL Lagrangian have been used in
the past, particularly in the last ten years; we consider a

three-flavour NJL Lagrangian of the form [3–5,21]

LNJL = L0 + Lm + L(4) + L(6) , (1)

where:

L0 = i q̄ γµ ∂µq , (2)
Lm = − q̄ m̂ q , (3)

L(4) =
G

2

8∑
k=0

[
(q̄i(λk)ijqj)

2 + (iq̄iγ5(λk)ijqj)
2
]
, (4)

L(6) = −K

[
det
i,j

(q̄i(1 + γ5)qj) + det
i,j

(q̄i(1 − γ5)qj)
]
. (5)

Above, q ≡

u

d
s


 is the quark field, m̂ ≡


mu 0 0

0 md 0
0 0 ms




is the mass matrix, λ1 . . . λ8 are the Gell-Mann flavour

matrices, and λ0 ≡
√

2
31.

L(4) generates four-leg interaction vertices, while L(6)

gives rise to six-leg interaction vertices; G and K are two
parameters of the model, with the dimensions of [L2] and
[L5], respectively. In the limit of mi = 0, the symmetries
of the model Lagrangian are the following ones:

UV (1) × SUV (3) × SUA(3) × SUc(3) , (6)

where, of course, SUc(3) is global and not local; UA(1)
is broken by the existence of the axial anomaly. For an
extended analysis of this NJL Lagrangian, see for example
ref. [2].

Within the mean-field approximation it is possible to
evaluate the dynamical quark masses, which are gener-
ated by the quark-vacuum interaction; we consider ho-
mogeneous, isotropic quark matter, with Fermi momenta
pu
F, p

d
F and ps

F for the flavours u, d and s, respectively. The
result of the calculation is [15] (i, j, k = u, d, s):

m∗
i = mi − 2G〈q̄iqi〉+ 2K〈q̄jqj〉〈q̄kqk〉 (i �= j �= k), (7)

where

〈q̄iqi〉 = − 3
π2

Λ∫
pi
F

dp
m∗

i p
2√

p2 + (m∗
i )2

(8)

is the chiral condensate for the i-flavour. We introduce
a three-dimensional regularization with a cutoff Λ since
the integral is obviously divergent. It is important to note
that as the Fermi momenta increase, the chiral condensate
and the dynamical masses decrease. In the vacuum the
dynamical masses reach their highest values.

For our purposes it is very important to consider the
energy density of the system, which is given by the follow-
ing formula [15]:

ε = −
∑

i=u,d,s

3
π2

Λ∫
pi
F

dpp2
√

p2 + (m∗
i )2 +

+


 ∑

i=u,d,s

G〈q̄iqi〉2

 − 4K〈ūu〉〈d̄d〉〈s̄s〉. (9)
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The pressure of the system can then be derived to be

P = −ε + ρiµi , (10)

where

ρi =

(
pi
F

)3

π2
(11)

is the quark density of flavour i and µi =
√(

pi
F

)2 + (m∗
i )2

the corresponding chemical potential. The pressure of vac-
uum is then, using formula (9)1,

Pvac = −εvac = −ε(pi
F = 0), (12)

which is positive for the customary choices of the param-
eters G and K.

In the following sections we will consider two sets of
parameters, which have been employed in refs. [21] (set 1)
and [5] (set 2); in both cases the current masses for the u
and d quarks are fixed on the basis of isospin symmetry
and of limits on the average m̄ = (mu + md)/2 at 1 GeV
scale, while the remaining four parameters are fitted to
reproduce the masses of π, K and η′ mesons, together
with the pion decay constant fπ

2:

set 1 set 2
m≡mu = md = 5.5 MeV m≡mu = md = 5.5 MeV

ms = 140.7 MeV ms = 135.7 MeV
Λ = 602.3 MeV Λ = 631.4 MeV
GΛ2 = 3.67 GΛ2 = 3.67
KΛ5 = 12.36 KΛ5 = 9.29

With the above values, the effective quark masses in
the vacuum and the chiral condensates turn out to be

set 1 (MeV) set 2 (MeV)
m∗

u = m∗
d 367.7 335.5

m∗
s 549.5 527.6

|〈q̄q〉u|1/3 = |〈q̄q〉d|1/3 241.9 246.7
|〈q̄q〉s|1/3 257.7 266.7

3 Nucleon radius

We will heuristically assume that a quark confined in a nu-
cleon has a Gaussian wave function; the reasons for this
assumption are essentially three: this wave function re-
produces the confinement of a particle in a spatial region,
it can be treated analytically, and it is also the ground-
state wave function of a harmonic oscillator. Hence, with

1 Several works [2,15] introduce a constant, B, which allows
to set the vacuum pressure and energy to zero; this procedure,
however, is not useful for our purposes, since we are mainly
interested in differences of pressures, and we will not make use
of it.

2 Notice that in other works the NJL Lagrangian is written
using different notations (e.g., G instead of G/2 or with dif-
ferent sign for the six-quark coupling). Obviously this must be
taken into account in comparing the numerical values of the
parameters.

the correct normalization, the spatial wave function of the
three valence quarks in a nucleon is written as

Ψq (r) =
(

2
π

) 3
4 1
b

3
2
e−

r2

b2 , (13)

where b is a parameter with the dimension of a length.
The total baryonic density is then

ρB(r) = 3
(

1
3

)
|ψq(r)|2 = |ψq(r)|2 , (14)

which coincides with the probability density for one quark.
To fix the parameter b we establish a connection with the
properties derived in the NJL model.

First we calculate the following average quantities (av-
erage squared radius and average volume) from Ψq (r):

〈r2〉 =
3
4
b2; 〈V 〉 =

4
3
π〈r2〉3/2 =

π
√

3
2

b3. (15)

Then, by considering the Fourier transform of Ψq (r),

A(k) =
b3/2

(2π)3/4
e−

1
4 k2b2 , (16)

we can calculate the average kinetic energy of the quark
as follows:

〈Eq〉 = 4π

∞∫
0

dkk2
√

(m∗
q)2 + k2 |A(k)|2 , (17)

where m∗
q is the dynamical quark mass.

As we have already noticed in the previous section,
the dynamical mass of a quark in a high-density region is
small, and this is precisely the situation of the quark inside
a baryon; therefore, we can eventually neglect m∗

q in the
previous formula, and explicitly obtain, for the average
energy of the quark, the analytic expression

〈Eq〉 
 4π

∞∫
0

dk |A(k)|2 k3 =
4√
2π

1
b

=
γ

〈V 〉1/3
, (18)

where use has been made of relation (15) to express 〈Eq〉 in

terms of the average volume and γ= (4/
√

2π)
(
π
√

3/2
)1/3

.
In this approximation the total energy density of a nucleon
turns then out to be

〈ET〉 = 3〈Eq〉, (19)

from which we can calculate the pressure of the three-
quark system as follows:

P = −
(
∂〈ET〉
∂〈V 〉

)
Nq

=
γ

〈V 〉4/3
. (20)

Nq being the total (fixed) number of quarks. This quantity
obviously depends on the parameter b.
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In order to set a connection with the NJL model, we
shall now evaluate the effective vacuum pressure acting on
the nucleon. In the NJL model the energy density can be
expressed in the following way:

ε = εu,d + εs , (21)

εu,d = −
∑

i=u,d

3
π2

Λ∫
pi
F

dp p2
√

p2 + (m∗
i )2

+
∑

i=u,d

G〈q̄iqi〉2 − 2K〈ūu〉〈d̄d〉〈s̄s〉 ,

εs = − 3
π2

Λ∫
0

dp p2
√

p2 + (m∗
s)2

+ G〈s̄s〉2 − 〈s̄s〉 (m∗
s −ms + 2G〈s̄s〉) ,

where we have set ps
F = 0, since in the nucleon no strange

valence quarks are present. It is possible to show [22] that
in this case 〈s̄s〉 is almost constant with varying u and d
densities. In turn, this implies

dεs

dm∗
s

= 〈s̄s〉 − 〈s̄s〉 = 0. (22)

By considering that m∗
s depends on ρu and ρd (see eqs. (7),

(8)), it follows that

∂εs

∂ρu
=

∂εs

∂ρd
= 0. (23)

For this reason εs does not contribute to the pressure act-
ing on the nucleon (it has the same value inside and out-
side) and in the following we will consider only the εu,d

contributions.
In the vacuum, with ρu = ρd = 0 (and pu

F = pd
F = 0),

the u, d contribution to the pressure is then

Pvac = −εu,d(vac) (24)

which, for the above-mentioned two different sets of pa-
rameters, turns out to be

Pvac = 2.091 × 1010 (MeV)4 , (set 1),
Pvac = 2.493 × 1010 (MeV)4 , (set 2). (25)

Inside the nucleon the vacuum pressure is uniquely
related to the Dirac sea energy density; indeed, since in
the nucleon interior u and d quark densities are high, we
can neglect, as before, their chiral condensate and their
masses. Hence, we have the following expression for the
internal pressure:

PN,vac = 2
3
π2

Λ∫
0

dp p3 =
3

2π2
Λ4 (26)

with the following numerical values:

PN,vac = 2.00 × 1010 (MeV)4 , (set 1),
PN,vac = 2.42 × 1010 (MeV)4 , (set 2). (27)

Finally the effective vacuum pressure acting on the nu-
cleon is

Peff = Pvac − PN,vac (28)

for which we get

Peff = 9.13 × 108 (MeV)4 , (set 1),
Peff = 7.71 × 108 (MeV)4 , (set 2). (29)

These values can be compared to the ones of the B pa-
rameter in the MIT bag model: the authors of ref. [23]
employed a value B = 4.42 × 108 MeV4 for reproducing
masses and other parameters of light hadrons, while the
value B = 7.68 × 108 MeV4 (very close to our net pres-
sure with parameter set 2) was more appropriate for the
hadronic structure functions [24].

In order to have equilibrium, the effective vacuum pres-
sure and the three quark pressure (20) must be equal; by
imposing this condition we can then fix the parameter b
in terms of the NJL model parameters. We obtain the
following values:

b = 0.993 fm , (set 1),
b = 1.036 fm , (set 2).

We can calculate 〈r2〉 and hence the radius of the nu-
cleon, R =

√〈r2〉, which turns out to be, for the two
parameter sets,

√
〈r2〉 = 0.860 fm , (set 1),√
〈r2〉 = 0.897 fm , (set 2).

in fair agreement with the experimental determination,√〈r2〉exp = 0.81 fm.
In spite of the simplicity of our approach, this re-

sult points to an interesting interpretation, since both the
Dirac sea and the vacuum pressure seem to play an im-
portant role in the nucleon stability.

In the next section we will use this model for the
calculation of the baryon octet masses. The above
determination of the value of b, in particular the approxi-
mation of neglecting the quark masses inside the nucleon,
employed in eqs. (18) and (26), will be discussed: indeed
it poses a delicate problem of self-consistency, as it will
be clarified below.

4 Octet baryon masses

In order to evaluate the baryon masses, we sum the ener-
gies of the constituent quarks: for this purpose we recall
that in the NJL model the effective mass, at fixed density,
is given by eqs. (7), (8). We shall implement these expres-
sions by taking into account the quark density inside the
baryon, according to the Ansatz (13) for the quark wave
function.

The density of Ni quarks of flavour i is then

ρi(r) = Ni

∣∣ψi
q(r)

∣∣2 , (30)
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with the condition: Nu +Nd +Ns = 3 . We can obtain the
behaviour of the dynamical mass m∗

i (r) as a function of
the distance r from the center of the baryon by using the
so-called Local Density Approximation (LDA). It amounts
to define a local Fermi momentum pi

F(r) = [π2ρi(r)]1/3

for each flavour of quarks and then insert it into the self-
consistent definition of the dynamical mass, which thus
becomes (i �= j �= k):

m∗
i (r) = mi +

6G
π2

Λ∫
pi
F(r)

dp
m∗

i (r)p
2√

p2 + (m∗
i (r))2

(31)

+2K
(

3
π2

)2




Λ∫

pj
F(r)

dp
m∗

j (r)p
2√

p2 + (m∗
j (r))2




×




Λ∫
pk
F(r)

dp
m∗

k(r)p
2√

p2 + (m∗
k(r))2


 ;

the r-dependence of m∗
i is governed by the lower limits

of integration and by the self-consistency requirement en-
tailed by eq. (31) itself.

As an example, we show in fig. 1 the masses of the
u, d and s quarks in the proton (Nu = 2, Nd = 1, and
Ns = 0) as a function of r, using the b values obtained
in the previous section. One can see that the light quark
masses are small for r ∼ 0, which roughly justifies the
approximations of the previous section. The s-quark mass
is affected by the quark density in the nucleon only by the
six-quark coupling term in the Lagrangian, hence it shows
a rather mild variation from the interior to the exterior of
the nucleon. On the contrary, the u and d masses are much
smaller inside the baryon than outside it.

The density dependence of the effective quark masses,
which here and in the following turns out to be one of the
most relevant features, deserves some words of criticism.
Indeed in the NJL model, the interplay between chemical
potential (which defines the Fermi energy and contains
the effective mass) and baryon density crucially depends
not only on the order of approximation made in solving,
for example, the gap equation, but also on the specific
values of the model parameters employed. This point has
been widely and clearly discussed in the review of Klevan-
sky [3], where the qualitatively different outcomes (e.g. for
the quark effective mass as a function of the chemical po-
tential) are elucidated. In particular it is shown that: i) the
order of the phase transition which occurs as the density
increases depends upon the inclusion of exchange effects
in the mean-field approximation and ii) the properties of
the system with increasing density dramatically depend
upon the chosen set of parameters. Of special relevance
is the value of the cutoff Λ as compared with the chem-
ical potential, since with increasing density a too small
cutoff could lead to unphysical negative effective masses.
These problems do not specifically affect the results of the
present work, but were carefully considered and checked
at any stage of the calculation.
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Fig. 1. Quark masses as a function of r in the nucleon case
for the two different sets of parameters. In both panels, solid
lines represent mu, dashed lines md and dotted lines ms.

To calculate baryonic masses, we still need the “local”
kinetic energy for the quark; in order to avoid an addi-
tional integration over the Fermi sphere for each quark
species, we employ the average momentum in the local
Fermi sphere, namely (3/5)pi

F
2. Hence the total baryonic

mass reads

M =
∑

i=u,d,s

∞∫
0

dr 4πr2ρi (r)

√
3
5
pi
F (r)2 + (m∗

i (r))2.

(32)
With this procedure, we can perform the calculation for
the whole baryonic octet simply by changing the (valence)
quark numbers Ni. Note that the dynamical mass of the
u-quark, for example, depends also on the d and s con-
densates; therefore, there is a strong interplay among the
different components of the system. The results of our
calculations are shown in the second and third rows of ta-
ble 1. As one can see, the results for the octet masses are
in very good agreement with the experimental values, for
both sets of parameters.
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Table 1. Experimental masses and theoretical masses of baryons calculated in the NJL model.

Baryon N Λ Σ+ ∆++ Ξ0 Ω−

mexp (MeV) 938.27 1115.68 1189.37 1232 1314.9 1672.45

mset 1 (MeV) 981.22 1150.59 1199.20 1072.28 1349.78 1536.84

mset 2 (MeV) 935.15 1119.71 1159.12 1013.36 1325.96 1517.38

Table 2. Experimental masses and theoretical masses of baryons calculated in the NJL model with the parameters (33), (35)
for the set 1, or (34), (36) for the set 2.

Baryon N Λ Σ+ ∆++ Ξ0 Ω−

mexp (MeV) 938.27 1115.68 1189.37 1232 1314.9 1672.45

mset 1 (MeV) 970.86 1096.34 1160.89 1095.56 1274.51 1493.10

mset 2 (MeV) 928.03 1067.12 1128.64 1037.89 1261.68 1486.26

mspin
set 1 (MeV) 938.27 1063.75 1132.26 1128.15 1244.73 1522.23

One should notice, however, that the above results are
based on an approximate procedure in evaluating the b pa-
rameter for up and down quarks in the proton, not fully
consistent with the local density approximation. More-
over, the same wave function of the u, d quarks has been
utilized for the s-quark in all considered hyperons. After
having introduced the LDA for the quark masses, a test of
consistency is in order, both to check the approximations
employed in eqs. (18) and (26) and to inquire whether the
s-quark wave function should eventually let be different
from the u- and d-quarks one.

To test these issues, let us first consider the proton,
with up and down quarks only: we start from eq. (31) by
taking into account also the b-dependence of the Fermi
momenta (and hence of the quark masses), through
their relation with the quark wave functions. Hence, by
replacing pi

F(r) → pi
F(r, b) and m∗

i (r) → m∗
i (r, b), we

recalculate 〈Eq〉 with non-vanishing and b-dependent m∗.
Then, following the same steps illustrated in section 3,
we obtain a new evaluation of the vacuum pressure, both
inside and outside the proton. We notice that here Pvac

and PN,vac are (numerically) calculated by taking into
account the non-zero values of the masses m∗

i and of the
condensates 〈q̄iqi〉.

We obtain the following values for the b parameter of
the u and d quarks in the proton:

bu,d = 0.878 fm , (set 1), (33)
bu,d = 0.922 fm , (set 2). (34)

These values are typically smaller by about 11% with re-
spect to the ones obtained in section 3; the correspond-
ing proton mean-square radius turns out to be

√〈r2〉 =
0.76 fm (set 1) or

√〈r2〉 = 0.80 fm (set 2) still in very
good agreement with the experimental charge radius.

Turning now to the strange quark wave function in-
side hyperons, we kept the functional form (13) yet allow-
ing for a different spatial extension of the s-quark distri-
bution, namely for a different value of the parameter b.
Hence, keeping the u, d wave functions as determined
in the nucleon, we repeated, e.g. for the Λ-hyperon, the
self-consistent determination of bs according to the above-
outlined procedure for the calculation of the internal and
external pressure. The resulting values, obtained for the
two sets of parameters, are:

bs = 0.697 fm , (set 1), (35)
bs = 0.691 fm , (set 2). (36)

They are smaller (by about 20–25%) of the correspond-
ing parameter for the up and down quarks, thus indi-
cating a less diffuse distribution of the strange quark in-
side the baryon. This outcome is quite sound, since the
strange quarks, having a larger bare (and effective) mass,
are seemingly confined to a smaller region of space and
provide a weaker kinetic pressure to balance the effective
vacuum pressure. Analogous calculations for the remain-
ing hyperons in the octet as well as for the Ω baryon led
us to almost identical values for the b parameter of the
s-quark wave function, thus indicating that the major in-
fluence comes from the mass rather than from the density
of the strange quarks.

We have thus re-evaluated the baryonic masses accord-
ing to eq. (32), by utilizing the parameter sets 1 and 2,
together with the corresponding values (33), (35) and
(34), (36) for the up, down and strange quarks, respec-
tively, contained in the different baryons. The results are
reported in table 2, while in fig. 2 we show the corre-
sponding theoretical/experimental ratios of the baryonic
masses. Again our results for the octet masses are in very
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Fig. 2. Theoretical-experimental baryon mass ratio: circles
correspond to the first set of parameters, squares to the second
set of parameters.

good agreement with the experimental values, for both
sets of parameters: by comparing tables 1 and 2 one can
see that the self-consistent calculation tends to slightly
decrease the theoretical masses and somewhat improves
the agreement with the experimental ones in a few cases,
among which, notably, the proton.

According to refs. [5,21] we employ mu = md, and
hence we cannot reproduce the mass splitting between
proton and neutron, or among baryons of other isospin
multiplets. We also notice that a satisfactory spectrum
has been obtained without taking into account spin cor-
rections, which should be irrelevant inside the same spin-
parity multiplet. Finally, we like to stress that the re-
sults presented here do not appreciably depend upon the
Ansatz for the functional form of the quark wave function:
indeed calculations performed with exponential wave func-
tions differ only by few percent from the ones shown here.

As a straightforward extension of the present ap-
proach, we have also evaluated the ∆ and Ω masses, which
belong to the spin-3

2 decuplet. The results are indicated,
together with the spin-1

2 octet, in fig. 2 and tables 1 and 2.
For these baryons the theoretical estimates are much lower
than the experimental values, more or less independent of
the parameter set employed in the calculation. This comes
to no surprise since the mass splitting between the octet
and the decuplet is usually attributed to the spin-spin in-
teraction among quarks, which we have till now neglected.

The latter can be identified with the color magnetic
interaction, which is largely responsible for the octet-
decuplet mass splitting. In the spirit of refs. [5,11,25],
we shall consider the spin interaction as a weak per-
turbation between constituent quarks, by assuming the
NJL model as a field-theoretical version of the constituent
quark model itself.

The usual spin-spin interaction derived from one gluon
exchange refers to non-relativistic quarks with constituent
masses. It is generally written as [5]

Vspin = a
∑
i<j

σiσj

MiMj
, (37)

where Mi and Mj are the (constant) masses in the vac-
uum. Here we do not take into account the density de-
pendence of the quark masses inside the baryon, since the
coefficients in the mass formula which reproduce the Gell-
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Fig. 3. Theoretical-experimental baryon mass ratio as ob-
tained with the parameter set 1: empty circles correspond to
the calculation without spin (see fig. 2), full circles include spin
corrections.

Mann–Okubo relation, include infinite higher orders in the
current masses mi hidden in Mi. As a safe compromise we
adopt the zero-range spin interaction (37), yet accounting
for the density distribution of quarks in the baryon. Hence
we write

∆Mspin = a
∑
i<j

1
MiMj

×
∫

dr1dr2ρi (r1) ρj (r2) 〈σiσj〉δ (r1 − r2)

(38)

and, by performing one of the integrations, we finally find

∆Mspin = a
∑
i<j

1
MiMj

∫
drρi (r) ρj (r) 〈σiσj〉. (39)

We found it convenient to fix the a parameter in or-
der to reproduce the nucleon mass (rather than the N -∆
mass splitting) thus obtaining, for the calculation with
the parameters of set 1, a = 0.72. The resulting masses
are reported in the last row of table 2, while their ratios to
the experimental masses are shown in fig. 3 (full circles).
One can see that, by including the spin correction, the
octet masses are not much modified, while the ∆++ and
Ω− masses, though somewhat improved, remain smaller
than the experimental values, the discrepancy being lim-
ited within 9%. Obviously a larger value for the a param-
eter would improve the decuplet masses, but worsening,
at the same time, the octet masses. Using the parameter
set 2 the situation cannot be sensibly improved by the in-
troduction of spin corrections, since all values obtained for
the baryon masses (including the proton one) are already
somewhat smaller than the corresponding experimental
masses.

5 Conclusions

We have considered the three-flavour effective Lagrangian
of the NJL model in order to determine, within the mean-
field approximation, the effective vacuum pressure acting
on a nucleon; this allowed us to fix in an unambiguous way
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the parameter of the quark wave functions in a baryon,
which were heuristically assumed to be bound state wave
functions of Gaussian type. Furthermore, we have eval-
uated the masses of the baryon octet by implementing
the local density approximation on the quark energies ob-
tained in a uniform and isotropic system.

The whole approach relies on the usual interpretation
that the NJL dynamical masses, related to the quark con-
densate, provide a consistent connection with the con-
stituent quark model. However, at variance with previous
works, we take into account the density dependence of the
constituent masses, a feature which appears to be crucial
in order to obtain a sensible determination of the various
baryonic masses.

We have calculated the nucleon radius under the as-
sumption that only the vacuum pressure is responsible for
the baryon stability. The results we obtained are fairly
good: in particular the baryonic masses turn out to be
close to the experimental values, already when we limit
ourselves to take into account the quark dynamics of the
NJL model. Spin corrections are shown to slightly improve
the results for the decuplet masses, though they remain
smaller than the experiment.

We found a remarkable stability of our results with
respect to different assumptions for the quark density in
the baryon; yet one important ingredient of our calculation
is the density dependence of the dynamical masses, which
provides, by itself, a realistic determination of the octet
baryonic masses, even without resorting to spin and/or
confining corrections, as usually adopted in the context of
the constituent quark model.

We are deeply indebted with Dr. Thomas Gutsche for many
valuable comments and for a careful reading of the manuscript.
We also thank Prof. A. Gal for very stimulating remarks.
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